# 面经手册 · 第21篇《手写线程池,对照学习ThreadPoolExecutor线程池实现原理!》
作者:小傅哥
博客:https://bugstack.cn (opens new window)
沉淀、分享、成长,让自己和他人都能有所收获!😄
# 一、前言
人看手机,机器学习!
正好是2020年,看到这张图还是蛮有意思的。以前小时候总会看到一些科技电影,讲到机器人会怎样怎样,但没想到人似乎被娱乐化的东西,搞成了低头族、大肚子!
当意识到这一点时,其实非常怀念小时候。放假的早上跑出去,喊上三五个伙伴,要不下河摸摸鱼、弹弹玻璃球、打打pia、跳跳房子!一天下来真的不会感觉累,但现在如果是放假的一天,你的娱乐安排,很多时候会让头很累!
就像,你有试过学习一天英语头疼,还是刷一天抖音头疼吗?或者玩一天游戏与打一天球!如果你意识到了,那么争取放下一会手机,适当娱乐,锻炼保持个好身体!
# 二、面试题
谢飞机,小记!
,上次吃亏在线程上,这次可能一次坑掉两次了!
谢飞机:你问吧,我准备好了!!!
面试官:嗯,线程池状态是如何设计存储的?
谢飞机:这!下一个,下一个!
面试官:Worker 的实现类,为什么不使用 ReentrantLock 来实现呢,而是自己继承AQS?
谢飞机:我...!
面试官:那你简述下,execute 的执行过程吧!
谢飞机:再见!
# 三、线程池讲解
# 1. 先看个例子
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(10));
threadPoolExecutor.execute(() -> {
System.out.println("Hi 线程池!");
});
threadPoolExecutor.shutdown();
// Executors.newFixedThreadPool(10);
// Executors.newCachedThreadPool();
// Executors.newScheduledThreadPool(10);
// Executors.newSingleThreadExecutor();
2
3
4
5
6
7
8
9
10
这是一段用于创建线程池的例子,相信你已经用了很多次了。
线程池的核心目的就是资源的利用,避免重复创建线程带来的资源消耗。因此引入一个池化技术的思想,避免重复创建、销毁带来的性能开销。
那么,接下来我们就通过实践的方式分析下这个池子
的构造,看看它是如何处理线程
的。
# 2. 手写一个线程池
# 2.1 实现流程
为了更好的理解和分析关于线程池的源码,我们先来按照线程池的思想,手写一个非常简单的线程池。
其实很多时候一段功能代码的核心主逻辑可能并没有多复杂,但为了让核心流程顺利运行,就需要额外添加很多分支的辅助流程。就像我常说的,为了保护手才把擦屁屁纸弄那么大!
关于图 21-1,这个手写线程池的实现也非常简单,只会体现出核心流程,包括:
- 有n个一直在运行的线程,相当于我们创建线程池时允许的线程池大小。
- 把线程提交给线程池运行。
- 如果运行线程数量大于等于核心线程数,则把线程放入队列中。
- 如果队列中容量已添加满,则判断判断当前正在运行的线程数量是否小于设定的最大线程数。若小于则线程池继续创建线程执行线程,若大于则走拒绝策略。
- 最后当有空闲时,则获取队列中线程进行运行。
# 2.2 实现代码
public class ThreadPoolTrader implements Executor {
private final AtomicInteger ctl = new AtomicInteger(0);
private volatile int corePoolSize;
private volatile int maximumPoolSize;
private final BlockingQueue<Runnable> workQueue;
public ThreadPoolTrader(int corePoolSize, int maximumPoolSize, BlockingQueue<Runnable> workQueue) {
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
}
@Override
public void execute(Runnable command) {
int c = ctl.get();
if (c < corePoolSize) {
if (!addWorker(command)) {
reject();
}
return;
}
if (!workQueue.offer(command)) {
if (!addWorker(command)) {
reject();
}
}
}
private boolean addWorker(Runnable firstTask) {
if (ctl.get() >= maximumPoolSize) return false;
Worker worker = new Worker(firstTask);
worker.thread.start();
ctl.incrementAndGet();
return true;
}
private final class Worker implements Runnable {
final Thread thread;
Runnable firstTask;
public Worker(Runnable firstTask) {
this.thread = new Thread(this);
this.firstTask = firstTask;
}
@Override
public void run() {
Runnable task = firstTask;
try {
while (task != null || (task = getTask()) != null) {
task.run();
if (ctl.get() > maximumPoolSize) {
break;
}
task = null;
}
} finally {
ctl.decrementAndGet();
}
}
private Runnable getTask() {
for (; ; ) {
try {
System.out.println("workQueue.size:" + workQueue.size());
return workQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
private void reject() {
throw new RuntimeException("Error!ctl.count:" + ctl.get() + " workQueue.size:" + workQueue.size());
}
public static void main(String[] args) {
ThreadPoolTrader threadPoolTrader = new ThreadPoolTrader(2, 2, new ArrayBlockingQueue<Runnable>(10));
for (int i = 0; i < 10; i++) {
int finalI = i;
threadPoolTrader.execute(() -> {
try {
Thread.sleep(1500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("任务编号:" + finalI);
});
}
}
}
// 测试结果
任务编号:1
任务编号:0
workQueue.size:8
workQueue.size:8
任务编号:3
workQueue.size:6
任务编号:2
workQueue.size:5
任务编号:5
workQueue.size:4
任务编号:4
workQueue.size:3
任务编号:7
workQueue.size:2
任务编号:6
workQueue.size:1
任务编号:8
任务编号:9
workQueue.size:0
workQueue.size:0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
以上,关于线程池的实现还是非常简单的,从测试结果上已经可以把最核心的池化思想体现出来了。主要功能逻辑包括:
ctl
,用于记录线程池中线程数量。corePoolSize
、maximumPoolSize
,用于限制线程池容量。workQueue
,线程池队列,也就是那些还不能被及时运行的线程,会被装入到这个队列中。execute
,用于提交线程,这个是通用的接口方法。在这个方法里主要实现的就是,当前提交的线程是加入到worker、队列还是放弃。addWorker
,主要是类Worker
的具体操作,创建并执行线程。这里还包括了getTask()
方法,也就是从队列中不断的获取未被执行的线程。
好,那么以上呢,就是这个简单线程池实现的具体体现。但如果深思熟虑就会发现这里需要很多完善,比如:线程池状态呢,不可能一直奔跑呀!?
、线程池的锁呢,不会有并发问题吗?
、线程池拒绝后的策略呢?
,这些问题都没有在主流程解决,也正因为没有这些流程,所以上面的代码才更容易理解。
接下来,我们就开始分析线程池的源码,与我们实现的简单线程池参考对比,会更加容易理解😄!
# 3. 线程池源码分析
# 3.1 线程池类关系图
以围绕核心类 ThreadPoolExecutor
的实现展开的类之间实现和继承关系,如图 21-2 线程池类关系图。
- 接口
Executor
、ExecutorService
,定义线程池的基本方法。尤其是execute(Runnable command)
提交线程池方法。 - 抽象类
AbstractExecutorService
,实现了基本通用的接口方法。 ThreadPoolExecutor
,是整个线程池最核心的工具类方法,所有的其他类和接口,为围绕这个类来提供各自的功能。Worker
,是任务类,也就是最终执行的线程的方法。RejectedExecutionHandler
,是拒绝策略接口,有四个实现类;AbortPolicy(抛异常方式拒绝)
、DiscardPolicy(直接丢弃)
、DiscardOldestPolicy(丢弃存活时间最长的任务)
、CallerRunsPolicy(谁提交谁执行)
。Executors
,是用于创建我们常用的不同策略的线程池,newFixedThreadPool
、newCachedThreadPool
、newScheduledThreadPool
、newSingleThreadExecutor
。
# 3.2 高3位与低29位
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
2
3
4
5
6
7
8
9
在 ThreadPoolExecutor
线程池实现类中,使用 AtomicInteger 类型的 ctl 记录线程池状态和线程池数量。在一个类型上记录多个值,它采用的分割数据区域,高3位
记录状态,低29位
存储线程数量,默认 RUNNING 状态,线程数为0个。
# 3.2 线程池状态
图 22-4 是线程池中的状态流转关系,包括如下状态:
RUNNING
:运行状态,接受新的任务并且处理队列中的任务。SHUTDOWN
:关闭状态(调用了shutdown方法)。不接受新任务,,但是要处理队列中的任务。STOP
:停止状态(调用了shutdownNow方法)。不接受新任务,也不处理队列中的任务,并且要中断正在处理的任务。TIDYING
:所有的任务都已终止了,workerCount为0,线程池进入该状态后会调 terminated() 方法进入TERMINATED 状态。TERMINATED
:终止状态,terminated() 方法调用结束后的状态。
# 3.3 提交线程(execute)
1、图中的左侧的核心线程池是否已满?建议改成是否已达到核心线程数 2、图中的有车的核心线程池是否已满?建议改成是否已达到最大线程数
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
在阅读这部分源码的时候,可以参考我们自己实现的线程池。其实最终的目的都是一样的,就是这段被提交的线程,启动执行
、加入队列
、决策策略
,这三种方式。
ctl.get()
,取的是记录线程状态和线程个数的值,最终需要使用方法workerCountOf()
,来获取当前线程数量。`workerCountOf 执行的是 c & CAPACITY 运算- 根据当前线程池中线程数量,与核心线程数
corePoolSize
做对比,小于则进行添加线程到任务执行队列。 - 如果说此时线程数已满,那么则需要判断线程池是否为运行状态
isRunning(c)
。如果是运行状态则把不能被执行的线程放入线程队列中。 - 放入线程队列以后,还需要重新判断线程是否运行以及移除操作,如果非运行且移除,则进行拒绝策略。否则判断线程数量为0后添加新线程。
- 最后就是再次尝试添加任务执行,此时方法 addWorker 的第二个入参是 false,最终会影响添加执行任务数量判断。如果添加失败则进行拒绝策略。
# 3.5 添加执行任务(addWorker)
private boolean addWorker(Runnable firstTask, boolean core)
第一部分、增加线程数量
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
第一部分、创建启动线程
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
添加执行任务的流程可以分为两块看,上面代码部分是用于记录线程数量、下面代码部分是在独占锁里创建执行线程并启动。这部分代码在不看锁、CAS等操作,那么就和我们最开始手写的线程池基本一样了
if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))
,判断当前线程池状态,是否为SHUTDOWN
、STOP
、TIDYING
、TERMINATED
中的一个。并且当前状态为SHUTDOWN
、且传入的任务为 null,同时队列不为空。那么就返回 false。compareAndIncrementWorkerCount
,CAS 操作,增加线程数量,成功就会跳出标记的循环体。runStateOf(c) != rs
,最后是线程池状态判断,决定是否循环。- 在线程池数量记录成功后,则需要进入加锁环节,创建执行线程,并记录状态。在最后如果判断没有启动成功,则需要执行 addWorkerFailed 方法,剔除到线程方法等操作。
# 3.6 执行线程(runWorker)
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // 允许中断
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null)
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
其实,有了手写线程池的基础,到这也就基本了解了,线程池在干嘛。到这最核心的点就是 task.run()
让线程跑起来。额外再附带一些其他流程如下;
beforeExecute
、afterExecute
,线程执行的前后做一些统计信息。- 另外这里的锁操作是 Worker 继承 AQS 自己实现的不可重入的独占锁。
processWorkerExit
,如果你感兴趣,类似这样的方法也可以深入了解下。在线程退出时候workers做到一些移除处理以及完成任务数等,也非常有意思
# 3.7 队列获取任务(getTask)
如果你已经开始阅读源码,可以在 runWorker 方法中,看到这样一句循环代码 while (task != null || (task = getTask()) != null)
。这与我们手写线程池中操作的方式是一样的,核心目的就是从队列中获取线程方法。
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
- getTask 方法从阻塞队列中获取等待被执行的任务,也就是一条条往出拿线程方法。
if (rs >= SHUTDOWN ...
,判断线程是否关闭。wc = workerCountOf(c),wc > corePoolSize
,如果工作线程数超过核心线程数量corePoolSize
并且 workQueue 不为空,则增加工作线程。但如果超时未获取到线程,则会把大于 corePoolSize 的线程销毁掉。timed
,是allowCoreThreadTimeOut
得来的。最终timed
为 true 时,则通过阻塞队列的poll方法进行超时控制。- 如果在
keepAliveTime
时间内没有获取到任务,则返回null。如果为false,则阻塞。
# 四、总结
- 这一章节并没有完全把线程池的所有知识点都介绍完,否则一篇内容会有些臃肿。在这一章节我们从手写线程池开始,逐步的分析这些代码在Java的线程池中是如何实现的,涉及到的知识点也几乎是我们以前介绍过的内容,包括:队列、CAS、AQS、重入锁、独占锁等内容。所以这些知识也基本是环环相扣的,最好有一些根基否则会有些不好理解。
- 除了本章介绍的,我们还没有讲到线程的销毁过程、四种线程池方法的选择和使用、以及在
CPU密集型任务
、IO 密集型任务
时该怎么配置。另外在Spring中也有自己实现的线程池方法。这些知识点都非常贴近实际操作。 - 好了,今天的内容先扯到这,后续的内容陆续完善。如果以上内容有错字、流程缺失、或者不好理解以及描述错误,欢迎留言。互相学习、互相进步。